Management of Experience Data for Rapid Adaptation to New Preferences Based on Bayesian Significance Evaluation
نویسندگان
چکیده
In a teaching and learning environment Bayesian network fits well because it can adjust its structure as per data presented to it. When a Bayesian network learns with a huge number of data, its belief value is updated even if the change in belief is not significant. This causes a problem when the user’s preference changes over time. The learning process cannot catch up rapidly enough to handle a new user preference. This problem is addressed in this work.
منابع مشابه
Analysis of Dependency Structure of Default Processes Based on Bayesian Copula
One of the main problems in credit risk management is the correlated default. In large portfolios, computing the default dependencies among issuers is an essential part in quantifying the portfolio's credit. The most important problems related to credit risk management are understanding the complex dependence structure of the associated variables and lacking the data. This paper aims at introdu...
متن کاملA new last aggregation compromise solution approach based on TOPSIS method with hesitant fuzzy setting to energy policy evaluation
Utilizing renewable energies is identified as one of significant issues for economical and social significance in future human life. Thus, choosing the best renewable energy among renewable energy candidates is more important. To address the issue, multi-criteria group decision making (MCGDM) methods with imprecise information could be employed to solve these problems. The aim of this paper is ...
متن کاملNetwork Resource Management for Improving Users Quality of experience in Software Defined Network by Weighted Fuzzy Petri-NetMethod
The rapid rise in popularity of multimedia applications, such as VoIP, IPTV and Video Conferencing, intensifies the need to consider resource management for user satisfaction. Furthermore, improving Quality of Experience (QoE) in Software Defined Networks (SDNs) services is one of the important issues to be addressed by provisioning optimum resource management. In this paper, resource allocatio...
متن کاملNetwork Resource Management for Improving Users Quality of experience in Software Defined Network by Weighted Fuzzy Petri-NetMethod
The rapid rise in popularity of multimedia applications, such as VoIP, IPTV and Video Conferencing, intensifies the need to consider resource management for user satisfaction. Furthermore, improving Quality of Experience (QoE) in Software Defined Networks (SDNs) services is one of the important issues to be addressed by provisioning optimum resource management. In this paper, resource allocatio...
متن کاملBayesian Analysis of Spatial Probit Models in Wheat Waste Management Adoption
The purpose of this study was to identify factors influencing the adoption of wheat waste management by wheat farmers. The method used in this study using the spatial Probit models and Bayesian model was used to estimate the model. MATLAB software was used in this study. The data of 220 wheat farmers in Khouzestan Province based on random sampling were collected in winter 2016. To calculate Bay...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced Robotics
دوره 25 شماره
صفحات -
تاریخ انتشار 2011